Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 13(8): e10343, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37529579

RESUMO

Interdisciplinary teams are on the rise as scientists attempt to address complex environmental issues. While the benefits of team science approaches are clear, researchers often struggle with its implementation, particularly for new team members. The challenges of large projects often weigh on the most vulnerable members of a team: trainees, including undergraduate students, graduate students, and post-doctoral researchers. Trainees on big projects have to navigate their role on the team, with learning project policies, procedures, and goals, all while also training in key scientific tasks such as co-authoring papers. To address these challenges, we created and participated in a project-specific, graduate-level team science course. The purposes of this course were to: (1) introduce students to the goals of the project, (2) build trainees' understanding of how big projects operate, and (3) allow trainees to explore how their research interests dovetailed with the overall project. Additionally, trainees received training regarding: (1) diversity, equity & inclusion, (2) giving and receiving feedback, and (3) effective communication. Onboarding through the team science course cultivated psychological safety and a collaborative student community across disciplines and institutions. Thus, we recommend a team science course for onboarding students to big projects to help students establish the skills necessary for collaborative research. Project-based team science classes can benefit student advancement, enhance the productivity of the project, and accelerate the discovery of solutions to ecological issues by building community, establishing a shared project vocabulary, and building a workforce with collaborative skills to better answer ecological research questions.

2.
Mycorrhiza ; 20(2): 117-26, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19690898

RESUMO

Alnus glutinosa is an important pioneer species that forms effective symbioses with Frankia and ecto and arbuscular mycorrhizal fungi (AMF). There is evidence that Frankia and AMF interact and the focus of this study was to investigate how interactions affected root system and root hair development. A. glutinosa seedlings were grown in pots in soil pre-inoculated with the AMF Gigaspora rosea. Seedlings were inoculated with Frankia either immediately on transfer to AMF-inoculated pots (day 0) on day 15 or on day 30 following AMF inoculation so the effect of timing of inoculation on interactions could be determined. Seedlings were harvested in batches at intervals of 10, 15, 20, 25 and 30 days after the commencement of each treatment. Both G. rosea and Frankia increased root branching and effects were greater when both were present. By contrast, both G. rosea and Frankia decreased root hair numbers markedly. Effects on root hair development were not a consequence of phosphorous, as P levels were not changed significantly in seedlings colonised by G. rosea or nodulated by Frankia. Effects are not due to differences in root system size but conceivably could offset some of the carbon costs incurred by the symbioses.


Assuntos
Alnus/crescimento & desenvolvimento , Alnus/microbiologia , Frankia/crescimento & desenvolvimento , Glomeromycota/crescimento & desenvolvimento , Micorrizas/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Alnus/anatomia & histologia , Raízes de Plantas/anatomia & histologia , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...